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Surface controllable anchoring of Cu onto nanostructured PtNi for
efficient electrochemical hydrogen evolution from seawater
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ABSTRACT Composition adjustment and establishment of
multifunctional sites are promising routes to enhance the
performance of Pt nanoalloys. A new strategy, involving sur-
face controllable anchoring of Cu on nanostructured PtNi
(named as Cu/PtNi), has been developed to enable precise
control of stoichiometric elements. The nanostructured ma-
terial contains oxophilic Ni that promotes fast water dis-
sociation, Pt for superior H adsorption and efficient H2
production, and Cu to give positive Gibbs free-energy of active
hydrogen adsorption for H2 desorption. The new Cu/PtNi
electrocatalyst displays superior activity in the electrocatalytic
hydrogen evolution reaction, associated with an overpotential
of 23 mV at 10 mA cm−2 in alkaline seawater that is five times
higher than the mass activity of commercial Pt/C (at 70 mV
overpotential). Results of density functional theory calcula-
tions verify that key processes including H2O dissociation, H*

adsorption and H2 desorption involved in the hydrogen evo-
lution reaction pathway in alkaline seawater are facilitated by
Pt, Ni, and Cu multifunctional metal sites.

Keywords: Cu/PtNi, seawater hydrogen evolution, surface ad-
justment, multifunction sites, hierarchical structure

INTRODUCTION
Platinum (Pt)-based nanometals are considered to be the most
efficient catalysts for the hydrogen evolution reaction (HER) [1–
5]. Nanostructure design and nanoalloy composition, which
enable acceleration of the dissociation of H2O, tuning of
excessive adsorption of H* and facilitation of the desorption of
H2, are very promising routes to enhance the performance of Pt
[6–8]. For example, PtNi alloy is one of the most active elec-
trocatalysts, where Ni is an oxophilic transition metal for
enhancement of hydroxyl adsorption and the dissociation of
H2O [9–11], and the electronic structure of Pt is adjusted by
electron migration from Ni to Pt for optimization of adsorption
of H* [5], although this may be detrimental for H2 desorption.
Ideally, multiple metal sites in Pt-based metals give rise to fast
dissociation of H2O, favouring both the adsorption of H+ and

efficient desorption of H2 by synergistic alloying effects. Note
that the key to electrocatalysis lies in the fact that the charge
carriers travel to the electrode surface during electrocatalytic
reactions, and thus the surface adjustment is critical for the high
performance of Pt-based alloys [12–18]. In the past few years,
great efforts have been devoted to improving the catalytic effi-
ciency through adjusting surface grain strain and the establish-
ment of an electron-rich surface. For example, Zhou’s group
[19–21] reported the synthesis of heteroatom (N, P, S) doping to
expand the original lattice while at the same time reduce the d-
band contraction and optimize the H adsorption strength on the
surface. In addition, Hou’s group [22–26] established the elec-
tron-rich surface active sites (Ru, Co and W, etc.) to weaken the
excessive H* adsorption and improve the catalytic properties.
However, there are few reports in which more than two different
metals are found in reproducible ratios on the surface of
nanoalloys, because different rates of crystal nuclei formation
and different lattice spacings of more than two independent
metal precursors would not lead to the formation of a homo-
geneous phase and be hard to allow precise control of stoi-
chiometric elements [27]. It is seemingly impossible to precisely
control the stoichiometry of such surface metal sites.
Metal sites in nanoalloys should perform specific functions for

anticipated H2 production. For example, in PtNiCu, oxophilic Ni
shows fast water dissociation, Pt has superior H* adsorption
features for efficient H2 production, and Cu possesses positive
Gibbs free-energy of hydrogen adsorption (ΔGH*) for H2 deso-
rption [9,28–30]. Considering the role of Cu and the amount of
Cu which would cover the active sites on the surface of PtNi, an
appropriate ratio of Cu in PtNiCu is required. This provides the
possibility that surface adjustment of Cu enables efficient
improvement of H2 production of PtNi electrocatalysts. Due to
the difficulty of surface modification, the optimization of Pt-
based materials to date has mainly focused on the adjustment of
lattice spacing [31].
Herein, a very facile direct adsorbed-reduction method has

been developed to anchor and tune Cu on the surface of PtNi
with a Ni to Pt ratio of around 1 in a room-temperature, open,
and aqueous alkaline system. The ratios of anchored Cu sites
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were tuned from 1 to 24 at%, and the sample with 4 at% of Cu
on PtNi shows the best performance. Water electrolysis using
abundantly available seawater would be an ideal method for low-
cost and large-scale hydrogen production [32–36]. But com-
pared with the electrocatalytic process taking place in indust-
rially favored alkaline media, HER in seawater with Pt-based
alloys is difficult to perform owing to corrosion associated with
metal chloride/hydroxide formation caused by the abundance of
chloride ions in seawater [33,37–39]. Therefore, alkaline sea-
water was selected as a relatively harsh condition to test the
activity and durability of Cu/PtNi. Such directional 4 at% Cu
anchored on the PtNi surface (named as Cu/PtNi) facilitates
hydrogen desorption, and shows superior activity, with an
overpotential of 23 mV at 10 mA cm−2 in alkaline seawater,

compared with PtNi (60 mV), co-reduced PtNiCu (40 mV), and
commercial Pt/C (92 mV). Very interestingly, Cu/PtNi shows
outstanding durability, with a very small activity loss after 20-h
HERs in alkaline seawater. Density functional theory (DFT)
results further verify the process (water dissociation, H*

adsorption and H2 desorption) of the HER with the help of Pt,
Ni, and Cu multifunctional metal sites in alkaline seawater.

RESULTS AND DISCUSSION
A scheme of the procedure used to prepare Cu/PtNi is displayed
in Fig. 1a. First, the alloy PtNi with a hexagonal closed packed
(hcp) structure was prepared by using a hydrothermal method
[40]. PtNi was then mixed with copper acetate and NaOH to
carry out a reaction obtaining Cu(OH)2 which tended to be

Figure 1 (a) Schematic of the procedure for preparation of Cu/PtNi (4 at%). (b) SEM image of Cu/PtNi (4 at%). (c) Low- and (d) high-magnification TEM
images, (e) FFT pattern and (f) high-magnification TEM images of Cu/PtNi (4 at%). The yellow and blue regions correspond to the Cu nanoparticle and PtNi,
respectively. (g) HAADF-STEM image and (h–k) the corresponding energy dispersive X-ray spectroscopy mappings.
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strongly absorbed onto oxophilic Ni sites. Finally, ascorbic acid
(AA) was used to reduce Cu(OH)2 to Cu forming Cu/PtNi
composite. Fig. 1b shows a scanning electron microscopy (SEM)
image of the as-synthesized PtNi with 4 at% Cu nanoparticles
(denoted as Cu/PtNi in the studies described below, the ratio of
Cu determined by electron-coupled plasma atomic emission
spectrometry (ICP-AES), see Table S1). The image demonstrates
that Cu/PtNi has a homogeneous hierarchically branched mor-
phology. The transmission electron microscopy (TEM) image
shows that the average length of the branches is ~150 nm and
the diameter is ~30 nm (Fig. 1c, d). The fast Fourier transform
(FFT) pattern of Cu/PtNi contains a set of diffraction rings
assignable to the (0110), (0111) and (1120) planes of hcp-PtNi
(Fig. 1e). In the high-resolution TEM image of Cu/PtNi (Fig. 1f),
it can be seen that the lattice spacings are 0.223 and 0.218 nm,
which are consistent with the (0110) and (0002) planes of hcp
PtNi alloy. One Cu nanoparticle with a diameter of 2 nm on the
branch of PtNi, shows a lattice spacing of 0.210 nm which is
consistent with the (111) plane of Cu. Fig. 1g displays a high-
angle annular dark-field scanning TEM (HAADF-STEM) image
and the corresponding elemental mapping images are given in
Fig. 1h–k. The images show that Pt, Ni, and Cu are homo-
geneously distributed throughout the branches, further indicat-
ing the presence of highly dispersed Cu on the PtNi surface.
The morphology and composition of PtNi evaluated using

TEM show that PtNi and Cu/PtNi have comparable shapes and
structures (Fig. S1), indicating that the branched structure is not
affected by the deposition of Cu nanoparticles. In addition, the
unique branched structure endows PtNi nanoparticles with large

surface areas containing an abundance of attachment sites for
Cu [40]. The HAADF-STEM image and the corresponding
elemental mapping images (Fig. S1e, f) show that Pt and Ni are
highly homodispersed. For comparison, PtNiCu was synthesized
by adding the Cu precursors during the synthetic process of
PtNi. As shown in Fig. S2, PtNiCu exhibits a similar morphology
to that of PtNi and Cu/PtNi.
X-ray diffraction (XRD) was employed to investigate the

crystal structure of Cu/PtNi. As shown in Fig. 2a, PtNi, PtNiCu
and Cu/PtNi all display characteristic diffraction peaks at
around 40°, 42°, 45°, 72°, 80°, and 87° which match well with the
hcp PtNi alloy as previously reported [40–42]. The similarity of
the XRD patterns of Cu/PtNi and PtNi indicates that the
introduction of Cu nanoparticles does not change the crystalline
structure of PtNi. Note that a diffraction peak corresponding to
Cu is not present in the XRD pattern of Cu/PtNi, which is likely
due to its small size, well dispersity and low content (4 at%,
according to ICP-AES, see Table S1) [43]. To better characterize
the incorporation of Cu, pure Cu nanoparticles were synthesized
for comparison. The presence of a broad peak associated with
face centered cubic (fcc)-structured Cu confirms that the Cu
nanoparticles have small sizes, well dispersity and low content
(Fig. S3). Moreover, the XRD pattern of PtNiCu, prepared using
the conventional solvothermal process, contains obvious signals
for the fcc PtCu and fcc Pt, which proves the difficulty in con-
trollable synthesis of trimetallic alloy due to the vast difference in
chemical and physical properties of mixing elements (Fig. S4).
X-ray photoelectron spectroscopy (XPS) was conducted to

further explore the chemical states and structures of Cu/PtNi,

Figure 2 (a) XRD patterns of PtNi, PtNiCu and Cu/PtNi (4 at%). XPS showing binding energies of (b) Pt 4f for commercial Pt/C, PtNi, PtNiCu and Cu/PtNi
(4 at%), and (c) Ni 2p for PtNi, PtNiCu and Cu/PtNi (4 at%). (d) UPS spectra and (e) bar graph showing work functions of commercial Pt/C, PtNi, PtNiCu
and Cu/PtNi (4 at%). (f) ESR spectra of commercial Pt/C, PtNi, PtNiCu and Cu/PtNi (4 at%).
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PtNi, PtNiCu, and commercial Pt/C (Figs S5, S6). As shown in
Fig. 2b, the Pt 4f5/2 binding energy of Cu/PtNi is 0.2 eV lower
than that of PtNi, which indicates the electron transfer from Cu
to Pt owing to the lower electronegativity of Cu (1.9) than that of
Pt (2.2) [44–46]. The Pt 4f peak fitting results of commercial
Pt/C, PtNi, PtNiCu, and Cu/PtNi, displayed in Table S2, clearly
demonstrate that Pt0 is present on the surfaces of these alloys,
which makes them more resistant to corrosion [46]. In addition,
the Ni 2p peaks of Cu/PtNi are shifted to higher binding ener-
gies in comparison with those of PtNi (Fig. 2c and Table S2), as a
result of electron migration to Pt. This electronegativity induced
phenomenon leads to the electron transfer from Ni to Pt and
offers a higher electron vacancy in Ni 3d orbitals, which could
enhance interactions with water and create suitable hydroxyl
adsorption/desorption energies needed to accelerate HER under
alkaline conditions [5,47,48]. In addition, the Ni 2p fitting
results (Table S2) show that significantly more Ni(OH)2 is pre-
sent in Cu/PtNi compared with that in PtNi, which could also
facilitate water dissociation. This difference is likely a result of Ni
oxidation by Cu(OH)2 and dissolved oxygen during the reduc-
tion reaction (Fig. 1a).
Ultraviolet photoelectron spectroscopy (UPS) was carried out

to determine the change of work function associated with the
introduction of Cu to PtNi giving Cu/PtNi (Fig. 2d). The work
function corresponds to the energy required to move a valance
electron from the material surface to infinity and is a qualitative
index used to describe the activity of a material in a redox
reaction [49]. The UPS derived work functions of the alloys were
found to be in the following order: Cu/PtNi (4.2 eV) = PtNiCu
(4.2 eV) < PtNi (4.3 eV) < commercial Pt/C (4.5 eV) (Fig. 2e).
Cu/PtNi shows a lower work function than the other alloys,
indicating a unique surface effect from the introduction of Cu.
To gain additional information about the influence of the

introduction of Cu nanoparticles into Cu/PtNi, the localized
paramagnetic species were investigated by using electron spin
resonance (ESR) spectroscopy (Fig. 2f). Compared with the
signals in the spectrum of the PtNi alloy, those for Cu/PtNi and
PtNiCu have decreased in intensities, indicating that interactions
occur between PtNi and the Cu component. Notably, the
intensity of the ESR signal for Cu/PtNi is only slightly lower
while that for PtNiCu is more attenuated, illustrating that only
relatively weak interactions in Cu/PtNi occur due to the intro-
duction of Cu nanoparticles, while strong interactions are cre-
ated by alloying Cu into PtNiCu.
Cyclic voltammetry (CV) was carried out to examine the

electrochemically active surface area (ECSA) of Cu/PtNi in
contrast to those of PtNi, PtNiCu and commercial Pt/C catalysts
(Fig. S7a). ECSAs were obtained by measuring the charge col-
lected in the hydrogen adsorption/desorption region. Based on
the mass of Pt, the ECSAs of commercial Pt/C, PtNi, PtNiCu,
and Cu/PtNi are 59, 41, 37 and 30 m2 g−1, respectively (Fig. S7b,
and Table S3). Note that the specific ECSA of commercial Pt/C
is higher than those of other catalysts due to its small particle
size [50]. As a result of introducing Cu nanoparticles onto the
active sites of PtNi, Cu/PtNi shows a lower ECSA than PtNi and
PtNiCu, confirming that Cu nanoparticles are well anchored
onto the PtNi. Next, the catalytic activities of Cu/PtNi for HER
in alkaline seawater were assessed. Polarization curves of Cu/
PtNi and the related commercial Pt/C, PtNi, and PtNiCu in N2-
saturated alkaline seawater (3.5 wt% NaCl + 1 mol L−1 KOH) at
room temperature were determined using a scan rate of

5 mV s−1. As can be seen in Fig. 3a, the HER activities of the
catalysts are in the following order: Cu/PtNi > PtNiCu > PtNi >
commercial Pt/C. Clearly, the overpotential (at a current density
of 10 mA cm−2) for Cu/PtNi containing 4 at% Cu (23 mV) is
lower than that of PtNiCu (40 mV), PtNi (60 mV), and com-
mercial Pt/C (92 mV) (Fig. 3b). In addition, the mass activity of
Cu/PtNi is 2.32 mA μgPt−1 (at 70 mV overpotential) (Table S3),
which is five-fold that of commercial Pt/C (0.46 mA μgPt−1),
about three-fold that of PtNi (0.83 mA μgPt−1) and about two-
fold that of PtNiCu (1.34 mA μgPt−1).
To elucidate the mechanism of HER catalyzed by Cu/PtNi,

Tafel slopes were acquired by fitting experimental data using the
Butler–Volmer equation (Fig. 3c). The respective Tafel slopes of
commercial Pt/C, PtNi, PtNiCu, and Cu/PtNi were calculated to
be 74, 42, 36, and 24 mV dec−1. Compared with commercial
Pt/C (74 mV dec−1), the lower Tafel slope of PtNi indicates that
the introduction of strongly oxophilic Ni stabilizes hydroxyl
intermediates and facilitates water dissociation [10,40,51,52].
Thus, it is clear that the Heyrovsky step is rate-limiting in the
processes promoted by PtNi and PtNiCu. In contrast, the Tafel
slope of Cu/PtNi is 24 mV dec−1, indicating that the Tafel step is
rate-limiting in HER [8,53]. Moreover, a comparison of HER
performance of Cu/PtNi and other catalysts in alkaline seawater
shows that Cu/PtNi displays the lowest Tafel slope and potential
(Fig. 3d and Table S4). To explore interface charge transfer in
the newly developed catalyst, electrochemical impedance spec-
troscopy (EIS) was carried out. The EIS results show that the
charge transfer resistance (Rct) follows the sequence as PtNi
(7.6 Ω) < Cu/PtNi (8.5 Ω) < Pt/C (20.9 Ω) < PtNiCu (22.4 Ω),
indicating a relatively small Rct of Cu/PtNi (Fig. S8). The slightly
increased Rct of Cu/PtNi compared with PtNi may be due to the
incorporation of Cu nanoparticles onto the originally ordered
PtNi crystalline structure. This finding demonstrates that Cu/
PtNi has a relatively high charge transport efficiency and rela-
tively high potential for excellent electrocatalytic performance.
The turnover frequencies (TOF, Fig. 3e) of the Pt-based catalysts
were determined in accordance with surface charges that are
proportional to the number of electrochemically active sites [54–
57], and compared at an overpotential of 70 mV (Fig. S9). The
results show that the TOF of Cu/PtNi is 2.33 s−1, which is five-
fold that of commercial Pt/C (0.46 s−1), about three-fold that of
PtNi (0.85 s−1) and about two-fold that of PtNiCu (1.36 s−1).
The durability of the catalysts for HER was also evaluated.

Chronopotentiometry measurements show that in contrast to
commercial Pt/C, Cu/PtNi displays better long-term stability
without suffering from such severe potential change during the
HER (Fig. 3f). Chronopotentiometry (Fig. 3g) demonstrates that
only a slight shift of the potential of Cu/PtNi takes place after
2000 cycles. The results suggest that the improved stability of
Cu/PtNi derives from the direct anchoring of Cu. The combined
results of the investigations described above definitely demon-
strate that Cu/PtNi containing multifunctional sites has greatly
improved HER activity and durability. In the final phase of this
study, we assessed the electrocatalytic properties of Cu/PtNi
containing different amounts of Cu nanoparticles. The respec-
tive ECSAs for PtNi with 1, 8 and 24 at% Cu nanoparticles were
determined to be 36, 25 and 20 m2 gPt−1 (Fig. S10a, b and
Table S4), showing that the ECSA of PtNi decreases with
increasing Cu content. A comparison of polarization curves of
PtNi with different contents of Cu nanoparticles (Fig. S11a and
Fig. 3a) clearly shows that the 4 at% Cu/PtNi has the highest
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activity, with a mass activity of 2.32 mA μgPt−1, that is about two
to three times higher than those containing 1, 8 and 24 at% Cu
(Fig. 3b, Fig. S11b). TOF measurements show that 4 at% Cu/
PtNi has the highest HER performance (Fig. S12a and Fig. 3e),
with a TOF that is almost two- to three-fold that of the
respective 1, 8, and 24 at% Cu/PtNi (Fig. S12b). Finally, the
4 at% Cu/PtNi has a Tafel slope of 24 mV dec−1, a value that is
lower than those of the analogues containing 1 (37 mV dec−1), 8
(34 mV dec−1) and 24 at% Cu (43 mV dec−1) (Fig. S13). This
observation verifies the excellent H* adsorption/desorption
properties of Cu/PtNi for the establishment of multifunctional
sites.
To elucidate the inherent relationship between the electronic

structure and the excellent electrocatalytic HER performance of
Cu/PtNi under alkaline conditions, DFT calculations were per-
formed. Based on previous studies of hexagonal and fcc Pt
[43,58], three sets of slab models of fcc (111) facets of PtNi,
PtNiCu and Cu/PtNi were constructed, which correspond with
hexagonal (0002) facets and are consistent with the TEM images
( Figs 1d and 4a). In order to further understand the alkaline
HER mechanism, we proceeded to construct models for the
adsorption of intermediates on the surface (Fig. S14). As shown
in Fig. 4b, c, PtNi and PtNiCu have larger water dissociation
energy barriers (ΔGw*) of 1.32 and 1.21 eV and high hydrogen
adsorption free energies (ΔGH*) of −0.45 and −0.30 eV, indi-
cating that they operate through a very sluggish Volmer–Tafel

mechanism [57]. In contrast, the ΔGw* on Cu/PtNi is sig-
nificantly decreased to 0.87 eV, and it has a lower ΔGH* of
0.19 eV, which corresponds to a superior hydrogen desorption
capability. Moreover, in order to probe the role of Cu site in Cu/
PtNi for HER, two models of hydrogen adsorbed on Cu sites of
Cu/PtNi and PtNiCu respectively were constructed and com-
pared (Fig. S15). As can be seen from Fig. S16, Cu/PtNi exhibits
a much positive ΔGH* than that of PtNiCu, proving the incor-
poration of Cu onto PtNi will effectively accelerate H2 deso-
rption from Cu/PtNi catalyst. Thus, Cu/PtNi undergoes a highly
active center promoted HER process, which agrees well with the
experimental results. Thereby, faster H2O dissociation and more
appropriate adsorption/desorption of H render Cu/PtNi a better
HER performance, indicating that the Volmer step and Tafel
step work positively together. Fig. 4d shows the differential
charge density diagrams calculated from the three models. It is
clear the introduction of Cu nanoparticles has enhanced the
asymmetric charge transfer, leading to charge polarization and
electron redistribution of the surface. Fig. 4e shows the partially
density of states (PDOS) diagrams for the three models of Cu/
PtNi, PtNi and PtNiCu. The overlap of the Pt 5d orbital with the
Ni 3d orbital around the Fermi level indicates that orbital cou-
pling may facilitate the HER process. According to the d-band
theory [36,59–62], metal atoms with a more positive d-band
center possess less occupancy of antibonding states and thus
enter into stronger adsorption to the intermediates. The Cu/PtNi

Figure 3 (a) HER polarization curves, (b) overpotentials (at a current density of 10 mA cm−2), and (c) Tafel plots of commercial Pt/C, PtNi, PtNiCu, and
Cu/PtNi (4 at%). (d) Performance of Cu/PtNi (4 at%) in comparison to other catalysts towards HER. (e) Calculated TOF curves of commercial Pt/C, PtNi,
PtNiCu, and Cu/PtNi (4 at%). (f) Chronopotentiometry curves promoted by Cu/PtNi (4 at%) and commercial Pt/C for HER. (g) Linear sweep voltammetry
(LSV) plots of Cu/PtNi (4 at%) before and after 2000 potential cycles in alkaline seawater.
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has the more positive d-band center (−1.89 eV) than that of
PtNi (−1.90 eV) and PtNiCu (−1.93 eV), which indicates the
strongest adsorption to intermediates and the easiest adsorption
of H2O.

CONCLUSIONS
In summary, we have developed an effective strategy for efficient
and durable Cu/PtNi catalyst design by surface controllable
anchoring of Cu onto nanostructured PtNi to establish multi-
functional sites toward HER. The existence of multifunctional
sites has been revealed by both experiments and DFT calcula-
tions. Moreover, Cu/PtNi exhibits a five-fold higher mass
activity and much higher durability towards HER than that of
the commercial Pt/C catalyst. The enhanced electrocatalytic
performance of Cu/PtNi is ascribed to the multifunctional sites,
which optimize water dissociation, adsorption of Hads, and
desorption of molecular hydrogen. The results of this investi-
gation shed new light on the design of Pt-based nanomaterials
that have multifunctional sites for high catalytic performance in
the HER.
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Cu在纳米结构PtNi上的表面可控锚定用于高效海水
产氢
杨雄1†, 肖宇轩2†, 陈江波1, 余菲1, 田歌1, 蒲福飞1, 章嵩1,
Susana I. Córdoba de Torresi3, Mark D. Symes4, Christoph Janiak5,
阳晓宇1*

摘要 表面组分调控及建立多功能活性位点是提高Pt基催化剂性能的
有效途径. 通过将Cu可控地锚定在纳米结构PtNi表面(Cu/PtNi)可以精
确控制Pt基催化剂表面元素的化学计量比, 其中亲氧的非贵金属Ni能
加速水的解离, Pt由于具有适中的H吸附能, 可有效地将游离态的H转
换成氢气, Cu由于具有正的H吸附吉布斯自由能(ΔGH*), 有助于H2的脱
附. 其中具有最优组分比例的Cu/PtNi电催化剂在海水中表现出优异的
电化学析氢活性和稳定性, 在碱性海水中, 10 mA cm−2下的过电位为
23 mV (在70 mV过电位下, 其质量活性是商用Pt/C的5倍). 同时, 密度
泛函理论结果进一步验证了在碱性海水中Pt, Ni和Cu多功能金属活性
位点可提高HER的H2O解离、H*吸附和H2脱附的过程.
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