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Abstract: Three novel iron(II) coordination polymers, namely [Fe(H2O)2(ttmb)2](ClO4)2·4H2O (1),
[Fe(H2O)2(ttmb)2](BF4)2·4H2O (2) and [Fe(NCS)2(ttmb)2] (3), were synthesized with the linker 1,3,5-
tris((1H-1,2,4-triazol-1-yl)methyl)benzene (ttmb). The single-crystal structures show that all three
compounds form a double-chain structure with the adjacent iron atoms being bridged by two ttmb
linkers. The iron(II) ions are octahedrally surrounded by four N4 donor atoms from the 1,2,4-triazol-
1-yl groups of four different ttmb linkers which form an equatorial plane and two trans-coordinated
aqua ligands in 1 and 2 or isothiocyanato ligands in 3 in the axial positions. In view of the neutral
bridging ttmb linker, there is a non-coordinated counter-anion in 1 and 2 (ClO4 and BF4, respectively),
and a coordinated NCS anion in 3. Compounds 1 and 2 are isostructural. Interestingly, the ttmb
linker only utilizes two of its three potentially coordinating triazole groups. All iron(II) coordination
networks are colorless or have a light-yellow color, being indicative of the high-spin state.

Keywords: coordination polymers; coordination networks; triazole ligand; iron(II); self-assembly;
hydrogen bonds

1. Introduction

According to the definition of the International Union of Pure and Applied Chemistry
(IUPAC), a coordination polymer is a one-, two- or three-dimensional (1D, 2D or 3D) coor-
dination compound consisting of repeating units [1–4]. Coordination polymers are often
formed by self-assembly processes and are constructed from metal ions as connectors and
organic ligands as linkers [5–7]. They can provide a wide range of topologies and struc-
tures [8–11]. Self-assembly describes a process in which the molecules arrange themselves
into an ordered pattern based on interactions without external forces [6,12–17]. For the
construction of 2D or 3D networks, tripodal ligands with three coordinating groups are
attractive linkers to connect between three metal ions as a basis for higher dimensional-
ity [18–24]. Triazole-based ligands are appropriate as linkers in coordination polymers since
they can be deprotonated to the corresponding azolate anions in which the nitrogen atoms
are strong donor atoms for d-metal ions [25–34]. Not only the dimensionality but also the
stability of networks increases with the number of donor atoms and coordination sites [35].
The geometry of coordination polymers depends on the structure of the linker, and also
depends on the presence of non-coordinating anions [36]. Particularly non-coordinating an-
ions not only balance the charges of the complex, but they also function as templates [37–41].
A template provides an organized arrangement of atoms to achieve a specific linkage of
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atoms [39,40]. In addition to the anions, solvent molecules can act as templates and control
the arrangement of a network [31,42–48]. Depending on the size and properties of the
anion, the effect on the geometry can vary [49,50]. Even if the anion is not coordinated
to the metal ion, there are intermolecular interactions with the surrounding network [47],
such as anion-π, hydrogen bonding or Lewis base–acid interactions [48,51]. Hydrogen
bonds within the coordination network also have an influence on the structure [7,52].

Iron(II) compounds with an octahedral coordination geometry of six nitrogen donor
ligands often exhibit spin crossover (SCO) behavior [53]. SCO describes the reversible
transition between a high-spin (HS) and a low-spin (LS) state induced through temperature
change, light radiation or variation in pressure [54]. The color and its change from nearly
colorless for the HS compound to red–violet for the LS complex upon cooling offers a quick
first diagnosis of the SCO effect without elaborate magnetic or Mößbauer studies. In the
solid-state X-ray structure, Fe–N bond lengths also indicate the spin state. The Fe–N bond
lengths typically range from 2.1 to 2.2 Å for HS, and from 1.8 to 2.0 Å for LS [55,56].

2. Materials and Methods

The used chemicals were all commercially obtained and no further purification was
done (see Supplementary Materials, Section S1). The used water was deionized.

FT-IR measurements were carried out on a Bruker TENSOR 37 IR spectrometer
(Bruker, Billerica, MA, USA) in ATR mode (Platinum ATR-QL, Diamond) in the range
500–4000 cm−1. NMR spectra were collected with a Bruker Avance III—300 (Bruker, Biller-
ica, MA, USA) (1H: 300 MHz; 13C{1H}: 75 MHz). Elemental analyses were measured on
a PerkinElmer 2400 series II elemental analyzer (PerkinElmer, Waltham, MA, USA) (ac-
curacy of 0.5%). Thermogravimetric analyses were carried out using a Netzsch TG209 F3
Tarsus (Netzsch, Selb, Germany) under nitrogen atmosphere with a ramp of 5 K min−1 up
to 1000 ◦C. X-ray powder diffraction measurements were performed on a Rigaku Mini-
Flex600 (Rigaku, Tokyo, Japan) (600 W, 40 kV, 15 mA) at room temperature with Cu-Kα
radiation (λ = 1.54184 Å). The low-background silicon holder in the PXRD device is the
cause of the rising baseline below 5◦ 2Theta. The highest reflex was normalized to 1. The
simulated powder patterns were derived from the single crystal data using the MERCURY
2020.3.0 software [57].

Three novel iron(II) coordination polymers, namely [Fe(H2O)2(ttmb)2](ClO4)2·4H2O
(compound 1), [Fe(H2O)2(ttmb)2](BF4)2·4H2O (compound 2) and [Fe(NCS)2(ttmb)2] (com-
pound 3), were synthesized with the linker 1,3,5-tris((1H-1,2,4-triazol-1-yl)methyl)benzene
(ttmb) (see Section 2.1). Under a polarized-light Leica M80 microscope (Leica, Wetzlar, Ger-
many), suitable single crystals were carefully selected and covered with oil on a cryo-loop.
The single crystal diffraction measurement for compounds 1 and 3 were carried out on
a Rigaku XtaLAB Synergy S diffractometer (Rigaku, Tokyo, Japan) with a hybrid pixel array
detector and a micro-focus sealed X-ray tube, PhotonJet copper X-ray source (λ = 1.54184 Å).
For cell refinement, data reduction and absorption correction CRYSALISPRO was used [58].
For compound 2, the measurement was performed on a Bruker Kappa APEX2 CCD X-ray
diffractometer (Bruker, Billerica, MA, USA) with a microfocus sealed tube molybdenum
X-ray source (λ = 0.71073 Å) and a multi-layer mirror monochromator. Cell refinement
was performed with APEX2, data reduction with SAINT and adsorption correction with
SADABS [59–61]. The crystal structures for compounds 1–3 were solved using OLEX2 with
SHELXT and the refinement was done with SHELXL [62–64]. The graphics were drawn
with the DIAMOND 4.0 software [65].

Photophysical measurements were performed on a fluorescence spectrophotometer
Edinburgh Instrument FS5 (Edinburgh Instruments Ltd., Edinburgh, UK). The excitation
and emission spectra were measured with a 150 W continuous xenon lamp as a light source.

Electrochemical measurements were conducted on an Interfere 1010E potentiostat
(Gamry Instruments, Warminster, PA, USA) with an RRDE-3A station (ALS, Tokyo, Japan).
A three-electrode setup was used with Ag/AgCl (stored in 3.5 mol L−1 KCL solution) as
the reference electrode, platinum as the counter electrode and a glassy carbon electrode
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(5 mm diameter) as the working electrode. A nitrogen-saturated acetonitrile solution with
tetrabutylammonium hexafluorophosphate (0.1 mol L−1) served as the electrolyte. The
ink was prepared by dispersing 1 mg of the sample in 0.5 mL ethanol and 20 µL Nafion
followed by sonication for 30 min. An amount of 10 µL of ink was dropped onto the working
electrode and dried at 150 rpm for a loading of about 10 µg cm–2. The cyclovoltammograms
were then recorded in the range from −2.5 V vs. Ag/AgCl to 1.3 V vs. Ag/AgCl with
a scan rate of 100 mV s−1.

2.1. Synthesis
2.1.1. Synthesis of 1,3,5-Tris((1H-1,2,4-triazol-1-yl)methyl)benzene (ttmb)
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2.1.3. Synthesis of [Fe(H2O)2(ttmb)2](BF4)2·4H2O (compound 2) 

(1)

The linker ttmb was synthesized with a modified synthesis procedure of Shang
et al. [66] as shown in Equation (1). An amount of 0.85 g (12.3 mmol) of 1,2,4-triazole
and 1.32 g (23.5 mmol) of potassium hydroxide were stirred in 30 mL of acetonitrile
for 30 min at room temperature. Afterwards, a solution of 1.0 g (2.8 mmol) of 1,3,5-
tris(bromomethyl)benzene in 20 mL of acetonitrile was added. The resulting solution was
stirred for an additional 30 min at room temperature. After filtration, the solvent was
removed in vacuo. Next, the resulting oil was dissolved in 20 mL of deionized water and
extracted with chloroform (5 × 50 mL). Once the organic phase was dried with MgSO4, the
solvent was again removed using rotatory evaporation. The product crystallized overnight
and was then dried in vacuum at 60 ◦C. Yield: 0.45 g (46%). C15H15N9: calc. C 56.1, H 4.7,
N 39.2; exp. C 55.5, H 4.6, N 38.5%. IR: ṽ [cm−1]: 3114, 3096, 3034, 2994, 2955, 3034, 2993,
2956, 2849, 1798, 1757, 1711, 1609, 1503, 1466, 1445, 1430, 1373, 1338, 1298, 1270, 1207, 1170,
1137, 1096, 1018, 987, 960, 917, 895, 880, 858, 800, 742, 680, 648, 601, 570. 1H-NMR (300 MHz,
DMSO-d6): δ [ppm]: 8.63 (s, 3H), 7.97 (s, 3H), 7.12 (s, 3H), 5.39 (s, 6H). 13C{1H}-NMR
(75 MHz, DMSO-d6: δ [ppm]: 151.81, 144.31, 137.26, 51.62.

2.1.2. Synthesis of [Fe(H2O)2(ttmb)2](ClO4)2·4H2O (Compound 1)

Please note that perchlorates are potentially explosive and should be handled with care! TGA
shows an explosion at around 200 ◦C after the sample was dried at 60 ◦C in vacuo before-
hand. An amount of 49 mg (0.19 mmol) of Fe(ClO4)2·xH2O and 84 mg (0.26 mmol) of ttmb
were dissolved in 3 mL of H2O and stored in a pre-heated oven at 60 ◦C for 20 h. After
cooling down to room temperature over a period of 4 h, yellow crystals were obtained.
The crystals were washed with water (3 × 3 mL) and stored in H2O. Yield: 73 mg (38%).
C30H42Cl2FeN18O14: calc. C 40.2, H 3.4, N 28.0; exp. C 39.5, H 3.6, N 27.8%. IR: ṽ [cm−1]:
3509, 3455, 3357, 3269, 3126, 3036, 2357, 1767, 1679, 1632, 1612, 1517, 1466, 1438, 1373, 1359,
1340, 1302, 1283, 1218, 1179, 1163, 1134, 1078, 1026, 989, 977, 962, 915, 886, 853, 778, 765, 747,
693, 677, 654, 621, 577.

2.1.3. Synthesis of [Fe(H2O)2(ttmb)2](BF4)2·4H2O (Compound 2)

For the synthesis of compound 2, two solutions were prepared. The first solution
contained 122.1 mg (0.36 mmol) of Fe(BF4)2·6H2O and 62.9 mg (0.36 mmol) of ascorbic
acid in 1.5 mL of H2O. The second solution was composed of 57.9 mg (0.18 mmol) of ttmb
dissolved in 1.5 mL of EtOH. Both solutions were heated up to 80 ◦C and then combined.
The mixture was stored in the preheated oven at 60 ◦C for 24 h and cooled down for 4 h. The
resulting colorless crystals were washed with a 1:1 (v:v) mixture of H2O:EtOH (3 × 3 mL)
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and later stored in that mixture as well. Yield: 68.5 mg (56%). C30H42B2F8FeN18O14: calc.
C 36.8, H 4.3, N 25.8; exp. C: 36.9, H 4.2, N 25.4%. IR: ṽ [cm−1]: 3537, 3460, 3264, 3129, 3033,
2360, 1766, 1634, 1612, 1518, 1469, 1439, 1374, 1360, 1341, 1284, 1218, 1180, 1163, 1144, 1133,
1047, 1023, 990, 977, 913, 884, 852, 795, 778, 765, 747, 693, 677, 654, 577.

2.1.4. Synthesis of [Fe(NCS)2(ttmb)2] (Compound 3)

A modified procedure of Garcia et al. [67] was used. Three solutions were prepared.
Solution 1 contained 19.6 mg (0.05 mmol) of (NH4)2Fe(SO4)2·6H2O and 32 mg (0.18 mmol)
of ascorbic acid in 1 mL of H2O. The second solution contained 7 mg (0.09 mmol) of
NH4SCN in 1 mL H2O. Solution 3 was composed of 29 mg (0.09 mmol) of ttmb in 1 mL of
deionized water. After heating each solution near its boiling point, solution 2 was added to
solution 1. Solution 3 was then added dropwise to this combined solution. After 48 h at
60 ◦C, colorless crystals were obtained. The crystals were washed with water (3 × 3 mL)
and stored in H2O. Yield: 26 mg (65%). C32H30FeN20S2: calc.: C = 47.2, H = 3.7, N = 34.4;
exp.: C = 46.5, H = 3.8, N = 33.9. IR: ṽ [cm−1]: 3580, 3436, 3140, 3126, 3110, 2961, 2845, 2338,
2162, 2046, 1779, 1757, 1611, 1522, 1502, 1466, 1430, 1359, 1340, 1311, 1298, 1275, 1202, 1178,
1159, 1131, 1019, 988, 974, 956, 923, 884, 847, 789, 759, 747, 682, 673, 652, 633, 583, 569.

3. Results and Discussion

The linker 1,3,5-tris((1H-1,2,4-triazol-1-yl)methyl)benzene (ttmb) was synthesized by
a nucleophilic substitution reaction between 1H-1,2,4-triazole and 1,3,5-tris(bromomethyl)
benzene in acetonitrile (see Equation (1)). The authentication was done by 1H, 13C NMR
and IR spectroscopy. The thermogravimetric analysis of the free ttmb linker shows
a thermal stability up to 310 ◦C. There is a sudden mass loss until 380 ◦C, which ac-
counts for more about 50% of the initial mass (see Supplementary Materials, Figure S7,
Section S2). The excitation and emission spectra of ttmb were recorded at room temperature
in the solid phase and are given in the Supplementary Materials S8, Figure S14. The linker
ttmb shows an excitation maximum at 420 nm in the visible region. The emission spectrum
has its maximum at around 360 nm upon excitation at 320 nm.

A schematic presentation of the synthesis of the complexes 1–3 is given in Scheme 1.
The compounds had to be prepared with different molar metal:ligand ratios, which were
optimized beforehand, in order to obtain crystals of sufficient quality for single-crystal
X-ray analysis. The molar M:L ratio for compound 1 was 2:3, for compound 2 it was 2:1 and
for compound 3 it was 1:2. The synthesis for the crystals of 1 was carried out by combining
the metal salt and the linker in water. For compound 2, the preparation was different: Two
separate warm solutions were assembled and later combined. The first solution contained
the metal salt with ascorbic acid and the second one contained the linker. This approach
was chosen to avoid rapid precipitation as powders. A similar synthesis was done for 3.
Additionally, a third warm solution with NH4NCS was prepared and in order to form the
intermediate product, ferrous nitrate; the solution of the metal salt and ascorbic acid were
combined with this solution first, and then the solution of the linker was added [68]. The
crystals have a colorless or a light-yellow color; microscopic images of the crystals can be
found in the Supplementary Materials, Section S5.

The IR spectra of the coordination polymers 1–3 (see Supplementary Materials, Section S3)
show their indicative bands for the ttmb linker at around 977 cm−1 for ν(C=C) and
1519 cm−1 for ν(C=N). Additionally, the characteristic bands for the anions of the com-
pounds can be detected for the ClO4

− of 1 at ν(Cl–O) = 621 cm−1, 1078 cm−1. The band
of the anion BF4

− of 2 can be observed at ν(B–F) = 1047 cm−1 and the anion of 3 at
ν(NCS) = 2046 cm−1 [69].
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Scheme 1. Schematic presentation of the synthesis of the coordination polymers 1–3 with their
double-chain structures. The blue spheres represent Fe(II) atoms.

Thermogravimetric analysis of compounds 1 and 2 revealed a gradual decomposition
(at a heating rate of 5 K min−1, see Supplementary Materials, Section S4). It starts at around
70 ◦C due to the loss of crystal water which for both complexes accounts for a mass loss
of 13 wt.%. The theoretical water content in compounds 1 and 2 amounts to 12.4 wt.% for
the four water molecules of crystallization and the two aqua ligands per formula unit. The
main decomposition starts for compound 1 at 190 ◦C and for 2 at 250 ◦C. Compound 1
decomposes almost completely with a mass loss of 84 wt.% in the second step, leaving
a residual mass of only 3% at 600 ◦C. Compound 2, on the other hand, leaves a residual
mass of 35% at 600 ◦C. This suggests a higher thermal stability due to the BF4 counter-anion.
Compound 3, which does not contain solvent of crystallization, is thermally stable up
to 300 ◦C, where the decomposition of the ligand starts. At 1000 ◦C, a residual mass of
11 wt.% remains (Figure S10), similar as in the TGA of the free ttmb linker (Figure S7).

The experimental powder X-ray diffraction patterns of 1–3 could be positively matched
to the simulated pattern from the single-crystal X-ray analysis which indicated a high phase
purity for the crystalline part of each compound (Figure 1). In addition, all X-ray diffraction
patterns show great agreement with the simulation. At the same time, light microscopy
images of the batches of compounds 1–3 showed almost exclusively crystalline matter (see
Supplementary Materials, Section S5).

The emission spectra of compounds 1–3 were recorded in solid phase at room temper-
ature. The samples were excited at λexc = 320 nm but did not exhibit any emission in the
visible region (see Supplementary Materials, Section S8). From the very light-yellow color
of compound 1 and colorless compounds 2 and 3, there is also no significant absorption
in the visible region, in agreement with the low-energy d-d splitting of high-spin d6-Fe(II)
where the absorption will lie in the near-infrared region (NIR).

The similar cyclic voltammograms of the coordination polymers are shown in Figure 2.
All three compounds have three anodic and two clearly visible cathodic potentials, which
are indicative of three redox reactions. The potential of the Ag/AgCl reference electrode
of 0.2 V has to be added to the measured potential for comparison to the standard redox
potentials versus the standard hydrogen electrode (SHE). Note that here the electrochemical
measurements were performed in acetonitrile whereas the standard redox potentials E◦ vs.
SHE are based on aqueous solutions. The oxidation wave with Epa ≈ 0.50 V vs. Ag/AgCl
or 0.7 V vs. SHE is assigned to the oxidation of Fe(II) to Fe(III) (E◦ = 0.77 V in water, pH = 0).
Upon reversal of the potential there is only a very small and not well developed peak for
the reduction of Fe(III) to Fe(II) at Epc ≈ 0.5 V. This suggest a nearly irreversible oxidation
with an unstable Fe(III) compound. The two reduction potentials at Epc ≈ –0.95 V and
≈ −1.6 V together with their oxidation potentials at Epa ≈ −1.2 V (shoulder) and ≈ –0.6 V,
respectively (all values vs. Ag/AgCl), are then due to ligand redox processes.
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3.1. Crystal Structure of [Fe(H2O)2(ttmb)2](X)2·4H2O (1: X = ClO4; 2: X = BF4)

Single-crystal X-ray analysis reveals that the isostructural complexes 1 and 2 crystallize
in the monoclinic space group P21/n. The asymmetric unit consists of one half of an Fe(II)
atom (on an inversion center), one ttmb ligand, one coordinated and two uncoordinated
water molecules, and one uncoordinated ClO4

− or BF4
− anion (Figure 3). Due to the steric

hindrance of the ttmb ligand and the interactions with the anions, the metal center possesses
a somewhat distorted octahedral geometry with a FeO2N4 coordination environment (see
Supplementary Materials, Section S7).
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Figure 3. Extended asymmetric unit of compounds (a) 1 and (b) 2 (50% thermal ellipsoids and H
atoms with arbitrary radii). The disordered F atoms of the BF4

− anion of compound 2 are presented
as transparent atoms. Symmetry transformation: (a): i = −x + 1, −y + 1, −z; ii = −x + 1, −y + 1, −z + 1;
iii = x, y, z − 1; iv = x, y, z + 1. (b): i = −x + 2, −y + 1, −z + 2; ii = −x + 2, −y + 1, −z + 1; iii = x, y, z + 1.

The equatorial positions are occupied by four nitrogen atoms which are provided
by four triazole groups of four ttmb units. The oxygen atoms of the water molecules are
trans-positioned around the Fe(II) atom (Figure 3).

For compounds 1 and 2, the Fe–N bond distances range from 2.08 to 2.22 Å. The Fe–N
bond lengths in compound 3 lie between 2.07 and 2.23 Å. These bond lengths also indicate
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that the Fe(II) centers in these compounds are in the high-spin state since the low-spin
state complexes typically have shorter Fe–N bonds (within 1.8 to 2.0 Å) [55]. In addition,
the light yellow color of complex 1 and the colorless compounds 2 and 3 signal an HS
state, with LS state Fe(II) complexes having a red–violet color [55]. The spin-allowed d-d
transitions of HS Fe(II) complexes lie in the near infrared (NIR), giving the complexes their
off-white color, whereas the stronger ligand field in the LS Fe(II) complexes has the 1A1g

→ 1T1g and 1T2g d-d transition at about 500 nm in the green absorption range so that the
complexes appear red–violet [70]. The Fe–O length is about 2.07 Å for 1 and 2.08 Å for 2.

Every ttmb ligand functions as a twofold bridge and connects two Fe(II) atoms with
an anti-conformation of the coordinating triazole groups. The spanned distance between
the Fe atoms is 13.46 Å. Every Fe(II) atom is connected to its neighbor by two ttmb linkers
in a double-chain structure (Figure 4). Since the perchlorate and tetrafluoroborate anions
have similar sizes, similar geometries and also similar chemical hardness, it was expected
that both compounds 1 and 2 are isostructural [71]. The ionic radius of ClO4

− is 2.37 Å,
and that of BF4

− is 2.29 Å [36].
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Figure 4. View of the double chain of compounds (a) 1 and (b) 2 with the surrounding crystal water
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The ClO4
− and BF4

− anions have C–H···O and C–H···F, respectively, hydrogen bond
interactions from the triazole groups of the ttmb linker [72]. For compound 1, Figure 5
shows that a ClO4

− anion interacts with one C–H of each triazole ring of the ttmb linker.
For the C–H···O interactions in 1, the hydrogen bond lengths range from 2.44 to 2.65 Å (Sup-
plementary Materials, Table S4). The C–H···F contacts in 2 are in the range of 2.45–2.55 Å
(Supplementary Materials, Table S4).
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3.2. Crystal Structure of [Fe(NCS)2(ttmb)2] (3)

The X-ray crystallographic analysis reveals that compound 3 crystallizes in the triclinic
space group P1. The asymmetric unit is composed of one half of an Fe(II) atom (on an
inversion center), one ttmb ligand and one coordinated NCS− anion, as shown in Figure 6.
The Fe(II) metal is octahedrally coordinated by six nitrogen donor atoms from four triazole
rings in the equatorial plane and two trans-coordinated NCS− in the axial positions.
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Figure 6. Extended asymmetric unit of compound 3 (50% thermal ellipsoids and H atoms with
arbitrary radii). Symmetry transformations: i = −x + 1, −y + 2, −z; ii = x, y + 1, z − 1; iii = −x + 1,
−y + 1, −z + 1; iv = x, y − 1, z + 1.

The distances of the Fe–N bonds lie between 2.07 and 2.23 Å. Therefore, this compound
is also in the HS state. Similar to the structures of compounds 1 and 2, two Fe(II) atoms
are linked by two ttmb linkers in an anti-conformation to form a double-chain structure
(Figure 7). The distance between two Fe(II) atoms is 13.79 Å.
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Figure 7. The double chain of compound 3 with the intrachain C–H···N/S hydrogen-bonding
interactions as yellow-orange dashed lines. See Table S4 for details of the H-bond interactions
(distances and angles). Symmetry transformation: iii = −x + 1, −y + 1, −z + 1.

All three compounds form one-dimensional chain structures that interdigitate with
the non-coordinated, dangling triazole rings as shown in Figure 8a. The supramolecu-
lar organization of the parallel chains is mediated by hydrogen-bonding interactions. In
the isostructural compounds 1 and 2, there are O–H···O and O–H···N interactions from
the aqua ligands to the crystal water molecule and to a free triazole-N from the adjacent
chain. Further, the crystal water molecule also forms O–H···N bonds to this adjacent
chain (Figure 8b). Thus, the chains are interconnected with each other by strong hydro-
gen bonding. The non-iron-coordinating triazole ring is therefore instrumental for the
supramolecular arrangement of the parallel chains. It is also evident, however, that there
is no steric hindrance of this ring to an additional metal coordination. Possibly, if less
hydrogen-bonding organic solvents are used in the synthesis, this third triazole group
could brought to metal coordination.



Crystals 2023, 13, 1574 11 of 16Crystals 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 

  
(a) (b) 

Figure 8. (a) View along the chain directions in compound 1 (isostructural to 2) to depict the inter-

digitation of the dangling triazole rings (perchlorate ions and crystal water molecules have been 

omitted for clarity). (b) Hydrogen bonding interactions (yellow-orange dashed lines) between the 

one-dimensional double chains and the water molecules in the crystal structure of 1 (isostructural 

to 2) (perchlorate ions have been omitted for clarity). See Table S4 for details of the H-bond interac-

tions (distances and angles). Symmetry transformations: vi = x − 1/2, −y + 3/2, z − 1/2; ix = –x + 3/2, y 

−1/2, –z + 1/2. 

In compound 3, the supramolecular packing of the chains is organized by weaker 
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Figure 8. (a) View along the chain directions in compound 1 (isostructural to 2) to depict the
interdigitation of the dangling triazole rings (perchlorate ions and crystal water molecules have been
omitted for clarity). (b) Hydrogen bonding interactions (yellow-orange dashed lines) between the
one-dimensional double chains and the water molecules in the crystal structure of 1 (isostructural to
2) (perchlorate ions have been omitted for clarity). See Table S4 for details of the H-bond interactions
(distances and angles). Symmetry transformations: vi = x − 1/2, −y + 3/2, z − 1/2; ix = –x + 3/2,
y −1/2, –z + 1/2.

In compound 3, the supramolecular packing of the chains is organized by weaker
interchain C–H···N/S hydrogen-bonding interactions (Figure 9).

All three compounds were tested for SCO behavior. From the very light-yellow color
of compound 1 and colorless compounds 2 and 3, an HS state for d6-Fe(II) is apparent. The
SCO test was done by cooling the samples to a temperature of 77 K with liquid nitrogen.
This method failed to show any change in color to red–violet, which would have indicated
a transition to the LS state. Also, ten tons of pressure were applied to the samples using
an IR pellet press. Again, no change in color could be detected. In order to observe SCO
behavior, rigid ligands are often preferred. Also, balanced cooperative interactions between
the Fe centers increase the probability of detecting SCO. This is due to the fact that the
M–L bond lengths change during the spin transition and supramolecular interactions
then lead to an abrupt spin crossover of all Fe centers in the solid sample [71]. As in the
previously synthesized 3D iron(II) frameworks with the 1,1′-(trans-2-butene-1,4-diyl)bis-
1,2,4-triazole ligand without SCO effect [72], we can only suggest that the doubly-bridged
chain structures of compounds 1–3 are also too rigid within the chain to allow for the
shortening of the Fe–N bond lengths when going from the HS to the LS state. In this
context, it may be beneficial to use more flexible ligands and also to have single-bridged
chain structures.
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Figure 9. C–H···N/S hydrogen-bonding interactions between the chains in compound 3 (intra-chain
C–H···N/S are not shown, cf. Figure 7). (a) The C–H···N interactions connect the chains parallel to
the a direction. (b) The C–H···S interactions orient the chains perpendicular to the a direction. See
Table S4 for details of the H-bond interactions (distances and angles). Symmetry transformations:
v = −x, −y + 1, −z + 1; vi = x, −y + 1, z.

4. Conclusions

The new iron(II) coordination polymers [Fe(H2O)2(ttmb)2](ClO4)2·4H2O (1), [Fe(H2O)2
(ttmb)2](BF4)2·4H2O (2), [Fe(NCS)2(ttmb)2] (3) with the linker 1,3,5-tris((1H-1,2,4-triazol-1-
yl)methyl)benzene (ttmb) were structurally characterized by single-crystal X-ray diffrac-
tion. It was hoped for that the potentially tritopic ttmb linker would utilize its three
triazole N-donor groups for metal coordination to form at least 2D if not even 3D coordi-
nation networks. Somewhat surprisingly, only two of the triazole groups coordinated to
iron. This could have still given a 2D framework if each of the four ttmb linkers around
an iron atom would connect to a different iron. Yet, two ttmb linkers each connected to the
same iron atom through a double bridge. Subsequently, 1D coordination polymers with
a double-chain structure and a 1:2 Fe:ttmb stoichiometry resulted. We note that the metal
ions were even offered in excess during the optimized synthesis with a molar M:L ratio
of 2:3 for 1 and 2:1 for 2. We hypothesize that it is not so much the counter anions which
exert a templating effect in the structures of 1–3 but the water solvent (or water/ethanol
for 2) from which the compounds were crystallized. Future work using different solvents
and also other metal ions for the crystallization should try to invoke the coordination of all
triazole groups of the ttmb linker.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13111574/s1, Section S1: Used Chemicals; Section S2: Lig-
and analyses; Section S3: Infrared spectra of compounds 1–3; Section S4: Thermogravimetric
analyses of compounds 1–3; Section S5: Crystal images of compounds 1–3; Section S6: Crystal
data of compounds 1–3; Section S7: Distortion of the coordination polyhedron of compounds 1–3;
Section S8: Photophysical spectra of ttmb and compounds 1–3; References [73–77] are cited in the
Supplementary Materials.
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